1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
//! A tree of nodes intigated with shipyard

use crate::NodeId;
use shipyard::{Component, EntitiesViewMut, Get, View, ViewMut};
use std::fmt::Debug;

/// A shadow tree reference inside of a tree. This tree is isolated from the main tree.
#[derive(PartialEq, Eq, Clone, Debug, Component)]
pub struct ShadowTree {
    /// The root of the shadow tree
    pub shadow_roots: Vec<NodeId>,
    /// The node that children of the super tree should be inserted under.
    pub slot: Option<NodeId>,
}

/// A node in a tree.
#[derive(PartialEq, Eq, Clone, Debug, Component)]
pub struct Node {
    parent: Option<NodeId>,
    children: Vec<NodeId>,
    child_subtree: Option<ShadowTree>,
    /// If this node is a slot in a shadow_tree, this is node whose child_subtree is that shadow_tree.
    slot_for_light_tree: Option<NodeId>,
    /// If this node is a root of a shadow_tree, this is the node whose child_subtree is that shadow_tree.
    root_for_light_tree: Option<NodeId>,
    height: u16,
}

/// A view of a tree.
pub type TreeRefView<'a> = View<'a, Node>;
/// A mutable view of a tree.
pub type TreeMutView<'a> = (EntitiesViewMut<'a>, ViewMut<'a, Node>);

/// A immutable view of a tree.
pub trait TreeRef {
    /// Get the id of the parent of the current node, if enter_shadow_dom is true and the current node is a shadow root, the node the shadow root is attached to will be returned
    #[inline]
    fn parent_id_advanced(&self, id: NodeId, enter_shadow_dom: bool) -> Option<NodeId> {
        // If this node is the root of a shadow_tree, return the node the shadow_tree is attached
        let root_for_light_tree = self.root_for_light_tree(id);
        match (root_for_light_tree, enter_shadow_dom) {
            (Some(id), true) => Some(id),
            _ => {
                let parent_id = self.parent_id(id);
                if enter_shadow_dom {
                    // If this node is attached via a slot, return the slot as the parent instead of the light tree parent
                    parent_id.map(|id| {
                        self.shadow_tree(id)
                            .and_then(|tree| tree.slot)
                            .unwrap_or(id)
                    })
                } else {
                    parent_id
                }
            }
        }
    }
    /// The parent id of the node.
    fn parent_id(&self, id: NodeId) -> Option<NodeId>;
    /// Get the ids of the children of the current node, if enter_shadow_dom is true and the current node is a shadow slot, the ids of the nodes under the node the shadow slot is attached to will be returned
    #[inline]
    fn children_ids_advanced(&self, id: NodeId, enter_shadow_dom: bool) -> Vec<NodeId> {
        let shadow_tree = self.shadow_tree(id);
        let slot_of_light_tree = self.slot_for_light_tree(id);
        match (shadow_tree, slot_of_light_tree, enter_shadow_dom) {
            // If this node is a shadow root, return the shadow roots
            (Some(tree), _, true) => tree.shadow_roots.clone(),
            // If this node is a slot, return the children of the node the slot is attached to
            (None, Some(id), true) => self.children_ids(id),
            _ => self.children_ids(id),
        }
    }
    /// The children ids of the node.
    fn children_ids(&self, id: NodeId) -> Vec<NodeId>;
    /// The shadow tree tree under the node.
    fn shadow_tree(&self, id: NodeId) -> Option<&ShadowTree>;
    /// The node that contains the shadow tree this node is a slot for
    fn slot_for_light_tree(&self, id: NodeId) -> Option<NodeId>;
    /// The node that contains the shadow tree this node is a root of
    fn root_for_light_tree(&self, id: NodeId) -> Option<NodeId>;
    /// The height of the node.
    fn height(&self, id: NodeId) -> Option<u16>;
    /// Returns true if the node exists.
    fn contains(&self, id: NodeId) -> bool;
}

/// A mutable view of a tree.
pub trait TreeMut: TreeRef {
    /// Removes the node and its children from the tree but do not delete the entities.
    fn remove(&mut self, id: NodeId);
    /// Adds a new node to the tree.
    fn create_node(&mut self, id: NodeId);
    /// Adds a child to the node.
    fn add_child(&mut self, parent: NodeId, new: NodeId);
    /// Replaces the node with a new node.
    fn replace(&mut self, old_id: NodeId, new_id: NodeId);
    /// Inserts a node before another node.
    fn insert_before(&mut self, old_id: NodeId, new_id: NodeId);
    /// Inserts a node after another node.
    fn insert_after(&mut self, old_id: NodeId, new_id: NodeId);
    /// Creates a new shadow tree.
    fn create_subtree(&mut self, id: NodeId, shadow_roots: Vec<NodeId>, slot: Option<NodeId>);
    /// Remove any shadow tree.
    fn remove_subtree(&mut self, id: NodeId);
}

impl<'a> TreeRef for TreeRefView<'a> {
    fn parent_id(&self, id: NodeId) -> Option<NodeId> {
        self.get(id).ok()?.parent
    }

    fn children_ids(&self, id: NodeId) -> Vec<NodeId> {
        self.get(id)
            .map(|node| node.children.clone())
            .unwrap_or_default()
    }

    fn height(&self, id: NodeId) -> Option<u16> {
        Some(self.get(id).ok()?.height)
    }

    fn contains(&self, id: NodeId) -> bool {
        self.get(id).is_ok()
    }

    fn shadow_tree(&self, id: NodeId) -> Option<&ShadowTree> {
        self.get(id).ok()?.child_subtree.as_ref()
    }

    fn slot_for_light_tree(&self, id: NodeId) -> Option<NodeId> {
        self.get(id).ok()?.slot_for_light_tree
    }

    fn root_for_light_tree(&self, id: NodeId) -> Option<NodeId> {
        self.get(id).ok()?.root_for_light_tree
    }
}

impl<'a> TreeMut for TreeMutView<'a> {
    fn remove(&mut self, id: NodeId) {
        fn recurse(tree: &mut TreeMutView<'_>, id: NodeId) {
            let (light_tree, children) = {
                let node = (&mut tree.1).get(id).unwrap();
                (node.slot_for_light_tree, std::mem::take(&mut node.children))
            };

            for child in children {
                recurse(tree, child);
            }

            // If this node is a slot in a shadow_tree, remove it from the shadow_tree.
            if let Some(light_tree) = light_tree {
                let root_for_light_tree = (&mut tree.1).get(light_tree).unwrap();

                if let Some(shadow_tree) = &mut root_for_light_tree.child_subtree {
                    shadow_tree.slot = None;
                }

                debug_assert!(
                    root_for_light_tree.children.is_empty(),
                    "ShadowTree root should have no children when slot is removed."
                );
            }
        }

        {
            let mut node_data_mut = &mut self.1;
            if let Some(parent) = node_data_mut.get(id).unwrap().parent {
                let parent = (&mut node_data_mut).get(parent).unwrap();
                parent.children.retain(|&child| child != id);
            }
        }

        recurse(self, id);
    }

    fn create_node(&mut self, id: NodeId) {
        let (entities, node_data_mut) = self;
        entities.add_component(
            id,
            node_data_mut,
            Node {
                parent: None,
                children: Vec::new(),
                height: 0,
                child_subtree: None,
                slot_for_light_tree: None,
                root_for_light_tree: None,
            },
        );
    }

    fn add_child(&mut self, parent: NodeId, new: NodeId) {
        {
            let mut node_state = &mut self.1;
            (&mut node_state).get(new).unwrap().parent = Some(parent);
            let parent = (&mut node_state).get(parent).unwrap();
            parent.children.push(new);
        }
        let height = child_height((&self.1).get(parent).unwrap(), self);
        set_height(self, new, height);
    }

    fn replace(&mut self, old_id: NodeId, new_id: NodeId) {
        {
            let mut node_state = &mut self.1;
            // update the parent's link to the child
            if let Some(parent_id) = node_state.get(old_id).unwrap().parent {
                let parent = (&mut node_state).get(parent_id).unwrap();
                for id in &mut parent.children {
                    if *id == old_id {
                        *id = new_id;
                        break;
                    }
                }
                let height = child_height((&self.1).get(parent_id).unwrap(), self);
                set_height(self, new_id, height);
            }
        }
        self.remove(old_id);
    }

    fn insert_before(&mut self, old_id: NodeId, new_id: NodeId) {
        let parent_id = {
            let old_node = self.1.get(old_id).unwrap();
            old_node.parent.expect("tried to insert before root")
        };
        {
            (&mut self.1).get(new_id).unwrap().parent = Some(parent_id);
        }
        let parent = (&mut self.1).get(parent_id).unwrap();
        let index = parent
            .children
            .iter()
            .position(|child| *child == old_id)
            .unwrap();
        parent.children.insert(index, new_id);
        let height = child_height((&self.1).get(parent_id).unwrap(), self);
        set_height(self, new_id, height);
    }

    fn insert_after(&mut self, old_id: NodeId, new_id: NodeId) {
        let mut node_state = &mut self.1;
        let old_node = node_state.get(old_id).unwrap();
        let parent_id = old_node.parent.expect("tried to insert before root");
        (&mut node_state).get(new_id).unwrap().parent = Some(parent_id);
        let parent = (&mut node_state).get(parent_id).unwrap();
        let index = parent
            .children
            .iter()
            .position(|child| *child == old_id)
            .unwrap();
        parent.children.insert(index + 1, new_id);
        let height = child_height((&self.1).get(parent_id).unwrap(), self);
        set_height(self, new_id, height);
    }

    fn create_subtree(&mut self, id: NodeId, shadow_roots: Vec<NodeId>, slot: Option<NodeId>) {
        let (_, node_data_mut) = self;

        let light_root_height;
        {
            let shadow_tree = ShadowTree {
                shadow_roots: shadow_roots.clone(),
                slot,
            };

            let light_root = node_data_mut
                .get(id)
                .expect("tried to create shadow_tree with non-existent id");

            light_root.child_subtree = Some(shadow_tree);
            light_root_height = light_root.height;

            if let Some(slot) = slot {
                let slot = node_data_mut
                    .get(slot)
                    .expect("tried to create shadow_tree with non-existent slot");
                slot.slot_for_light_tree = Some(id);
            }
        }

        // Now that we have created the shadow_tree, we need to update the height of the shadow_tree roots
        for root in shadow_roots {
            (&mut self.1).get(root).unwrap().root_for_light_tree = Some(id);
            set_height(self, root, light_root_height + 1);
        }
    }

    fn remove_subtree(&mut self, id: NodeId) {
        let (_, node_data_mut) = self;

        if let Ok(node) = node_data_mut.get(id) {
            if let Some(shadow_tree) = node.child_subtree.take() {
                // Remove the slot's link to the shadow_tree
                if let Some(slot) = shadow_tree.slot {
                    let slot = node_data_mut
                        .get(slot)
                        .expect("tried to remove shadow_tree with non-existent slot");
                    slot.slot_for_light_tree = None;
                }

                let node = node_data_mut.get(id).unwrap();

                // Reset the height of the light root's children
                let height = node.height;
                for child in node.children.clone() {
                    set_height(self, child, height + 1);
                }

                // Reset the height of the shadow roots
                for root in &shadow_tree.shadow_roots {
                    set_height(self, *root, 0);
                }
            }
        }
    }
}

fn child_height(parent: &Node, tree: &impl TreeRef) -> u16 {
    match &parent.child_subtree {
        Some(shadow_tree) => {
            if let Some(slot) = shadow_tree.slot {
                tree.height(slot)
                    .expect("Attempted to read a slot that does not exist")
                    + 1
            } else {
                panic!("Attempted to read the height of a child of a node with a shadow tree, but the shadow tree does not have a slot. Every shadow tree attached to a node with children must have a slot.")
            }
        }
        None => parent.height + 1,
    }
}

/// Sets the height of a node and updates the height of all its children
fn set_height(tree: &mut TreeMutView<'_>, node: NodeId, height: u16) {
    let (shadow_tree, light_tree, children) = {
        let mut node_data_mut = &mut tree.1;
        let node = (&mut node_data_mut).get(node).unwrap();
        node.height = height;

        (
            node.child_subtree.clone(),
            node.slot_for_light_tree,
            node.children.clone(),
        )
    };

    // If the children are actually part of a shadow_tree, there height is determined by the height of the shadow_tree
    if let Some(shadow_tree) = shadow_tree {
        // Set the height of the shadow_tree roots
        for &shadow_root in &shadow_tree.shadow_roots {
            set_height(tree, shadow_root, height + 1);
        }
    } else {
        // Otherwise, we just set the height of the children to be one more than the height of the parent
        for child in children {
            set_height(tree, child, height + 1);
        }
    }

    // If this nodes is a slot for a shadow_tree, we need to go to the super tree and update the height of its children
    if let Some(light_tree) = light_tree {
        let children = (&tree.1).get(light_tree).unwrap().children.clone();
        for child in children {
            set_height(tree, child, height + 1);
        }
    }
}

impl<'a> TreeRef for TreeMutView<'a> {
    fn parent_id(&self, id: NodeId) -> Option<NodeId> {
        let node_data = &self.1;
        node_data.get(id).unwrap().parent
    }

    fn children_ids(&self, id: NodeId) -> Vec<NodeId> {
        let node_data = &self.1;
        node_data
            .get(id)
            .map(|node| node.children.clone())
            .unwrap_or_default()
    }

    fn height(&self, id: NodeId) -> Option<u16> {
        let node_data = &self.1;
        node_data.get(id).map(|node| node.height).ok()
    }

    fn contains(&self, id: NodeId) -> bool {
        self.1.get(id).is_ok()
    }

    fn shadow_tree(&self, id: NodeId) -> Option<&ShadowTree> {
        let node_data = &self.1;
        node_data.get(id).ok()?.child_subtree.as_ref()
    }

    fn slot_for_light_tree(&self, id: NodeId) -> Option<NodeId> {
        let node_data = &self.1;
        node_data.get(id).ok()?.slot_for_light_tree
    }

    fn root_for_light_tree(&self, id: NodeId) -> Option<NodeId> {
        let node_data = &self.1;
        node_data.get(id).ok()?.root_for_light_tree
    }
}

#[test]
fn creation() {
    use shipyard::World;
    #[allow(dead_code)]
    #[derive(Component)]
    struct Num(i32);

    let mut world = World::new();
    let parent_id = world.add_entity(Num(1i32));
    let child_id = world.add_entity(Num(0i32));

    let mut tree = world.borrow::<TreeMutView>().unwrap();

    tree.create_node(parent_id);
    tree.create_node(child_id);

    tree.add_child(parent_id, child_id);

    assert_eq!(tree.height(parent_id), Some(0));
    assert_eq!(tree.height(child_id), Some(1));
    assert_eq!(tree.parent_id(parent_id), None);
    assert_eq!(tree.parent_id(child_id).unwrap(), parent_id);
    assert_eq!(tree.children_ids(parent_id), &[child_id]);
}

#[test]
fn shadow_tree() {
    use shipyard::World;
    #[allow(dead_code)]
    #[derive(Component)]
    struct Num(i32);

    let mut world = World::new();
    // Create main tree
    let parent_id = world.add_entity(Num(1i32));
    let child_id = world.add_entity(Num(0i32));

    // Create shadow tree
    let shadow_parent_id = world.add_entity(Num(2i32));
    let shadow_child_id = world.add_entity(Num(3i32));

    let mut tree = world.borrow::<TreeMutView>().unwrap();

    tree.create_node(parent_id);
    tree.create_node(child_id);

    tree.add_child(parent_id, child_id);

    tree.create_node(shadow_parent_id);
    tree.create_node(shadow_child_id);

    tree.add_child(shadow_parent_id, shadow_child_id);

    // Check that both trees are correct individually
    assert_eq!(tree.height(parent_id), Some(0));
    assert_eq!(tree.height(child_id), Some(1));
    assert_eq!(tree.parent_id(parent_id), None);
    assert_eq!(tree.parent_id(child_id).unwrap(), parent_id);
    assert_eq!(tree.children_ids(parent_id), &[child_id]);

    assert_eq!(tree.height(shadow_parent_id), Some(0));
    assert_eq!(tree.height(shadow_child_id), Some(1));
    assert_eq!(tree.parent_id(shadow_parent_id), None);
    assert_eq!(tree.parent_id(shadow_child_id).unwrap(), shadow_parent_id);
    assert_eq!(tree.children_ids(shadow_parent_id), &[shadow_child_id]);

    // Add shadow tree to main tree
    tree.create_subtree(parent_id, vec![shadow_parent_id], Some(shadow_child_id));

    assert_eq!(tree.height(parent_id), Some(0));
    assert_eq!(tree.height(shadow_parent_id), Some(1));
    assert_eq!(tree.height(shadow_child_id), Some(2));
    assert_eq!(tree.height(child_id), Some(3));
    assert_eq!(
        tree.1
            .get(parent_id)
            .unwrap()
            .child_subtree
            .as_ref()
            .unwrap()
            .shadow_roots,
        &[shadow_parent_id]
    );
    assert_eq!(
        tree.1.get(shadow_child_id).unwrap().slot_for_light_tree,
        Some(parent_id)
    );

    // Remove shadow tree from main tree
    tree.remove_subtree(parent_id);

    // Check that both trees are correct individually
    assert_eq!(tree.height(parent_id), Some(0));
    assert_eq!(tree.height(child_id), Some(1));
    assert_eq!(tree.parent_id(parent_id), None);
    assert_eq!(tree.parent_id(child_id).unwrap(), parent_id);
    assert_eq!(tree.children_ids(parent_id), &[child_id]);

    assert_eq!(tree.height(shadow_parent_id), Some(0));
    assert_eq!(tree.height(shadow_child_id), Some(1));
    assert_eq!(tree.parent_id(shadow_parent_id), None);
    assert_eq!(tree.parent_id(shadow_child_id).unwrap(), shadow_parent_id);
    assert_eq!(tree.children_ids(shadow_parent_id), &[shadow_child_id]);
}

#[test]
fn insertion() {
    use shipyard::World;
    #[allow(dead_code)]
    #[derive(Component)]
    struct Num(i32);

    let mut world = World::new();
    let parent = world.add_entity(Num(0));
    let child = world.add_entity(Num(2));
    let before = world.add_entity(Num(1));
    let after = world.add_entity(Num(3));

    let mut tree = world.borrow::<TreeMutView>().unwrap();

    tree.create_node(parent);
    tree.create_node(child);
    tree.create_node(before);
    tree.create_node(after);

    tree.add_child(parent, child);
    tree.insert_before(child, before);
    tree.insert_after(child, after);

    assert_eq!(tree.height(parent), Some(0));
    assert_eq!(tree.height(child), Some(1));
    assert_eq!(tree.height(before), Some(1));
    assert_eq!(tree.height(after), Some(1));
    assert_eq!(tree.parent_id(before).unwrap(), parent);
    assert_eq!(tree.parent_id(child).unwrap(), parent);
    assert_eq!(tree.parent_id(after).unwrap(), parent);
    assert_eq!(tree.children_ids(parent), &[before, child, after]);
}

#[test]
fn deletion() {
    use shipyard::World;
    #[allow(dead_code)]
    #[derive(Component)]
    struct Num(i32);

    let mut world = World::new();
    let parent = world.add_entity(Num(0));
    let child = world.add_entity(Num(2));
    let before = world.add_entity(Num(1));
    let after = world.add_entity(Num(3));

    let mut tree = world.borrow::<TreeMutView>().unwrap();

    tree.create_node(parent);
    tree.create_node(child);
    tree.create_node(before);
    tree.create_node(after);

    tree.add_child(parent, child);
    tree.insert_before(child, before);
    tree.insert_after(child, after);

    assert_eq!(tree.height(parent), Some(0));
    assert_eq!(tree.height(child), Some(1));
    assert_eq!(tree.height(before), Some(1));
    assert_eq!(tree.height(after), Some(1));
    assert_eq!(tree.parent_id(before).unwrap(), parent);
    assert_eq!(tree.parent_id(child).unwrap(), parent);
    assert_eq!(tree.parent_id(after).unwrap(), parent);
    assert_eq!(tree.children_ids(parent), &[before, child, after]);

    tree.remove(child);

    assert_eq!(tree.height(parent), Some(0));
    assert_eq!(tree.height(before), Some(1));
    assert_eq!(tree.height(after), Some(1));
    assert_eq!(tree.parent_id(before).unwrap(), parent);
    assert_eq!(tree.parent_id(after).unwrap(), parent);
    assert_eq!(tree.children_ids(parent), &[before, after]);

    tree.remove(before);

    assert_eq!(tree.height(parent), Some(0));
    assert_eq!(tree.height(after), Some(1));
    assert_eq!(tree.parent_id(after).unwrap(), parent);
    assert_eq!(tree.children_ids(parent), &[after]);

    tree.remove(after);

    assert_eq!(tree.height(parent), Some(0));
    assert_eq!(tree.children_ids(parent), &[]);
}